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A Additional Content

A.1 Companion Notebook

Section 2.1 is reproduced in a publicly accessible notebook on Google Colab at the following
link: https://colab.research.google.com/drive/1cMJtJbQ1jfibjtclYfh32V4R7poTqqzp?
usp=sharing

This notebook allows anyone to easily reproduce the results in that section of the paper, and
to test the algorithm under alternative parameters.

A.2 Optimal Firm Relocation

The following is a formalization of the firm’s relocation problem, which is not solved for in the
counterfactuals. As discussed in Section 4.2, I model relocation of vehicles (and charging)
as taking place overnight. Here, I further assume that the firm’s relocation policy takes
the form of a fixed initial vehicle distribution in the morning period, denoted Q̌∗

f . This is
motivated by some of the firms’ business model, which adopts a “gig economy” approach to
charging and relocation. This lets workers sign up through a mobile application and find
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vehicles needing to be charged. These firms generally require vehicles that are taken for
charging to be redeployed the following morning at specific locations.1. Given this business
model, a firm would need to commit to its deployment plan so gig workers can plan their
routes more efficiently.

Intuitively, the firm must then choose its initial deployment such as to balance the value
of a particular distribution of vehicles with its expected cost of relocating vehicles. Both
the value and the cost of relocation will depend on its pricing policy, which affects how its
vehicles will move over the course of the day.

Formally, I model the choice of initial deployment Q̌∗
f as:

Q̌∗
f = argmax

Q̌f

EQ̄f |p∗f ,Q̌f

[
Vf (Q̌f , h = 1|p∗f )− C∗(Q̌f , Q̄f |Cr)

]
(A.1)

Where Q̄f is the firm’s vehicle distribution at the end of the day, which is a random variable
whose probability distribution depends both on the pricing policy and the initial vehicle
distribution. Vf (Q̌f , h = 1|p∗f ) is the firm’s value of having the given vehicle distribution at
the start of the day, defined according to the pricing problem in 7. I let C∗(Q′, Q|Cr) be
the cost of optimally relocating vehicles from a distribution Q to a distribution Q′, obtained
from a canonical optimal transport problem with movement cost matrix Cr (also known as
the earth mover’s distance). I also use this to define VR(Q), the firm’s value of ending the
day with a particular vehicle distribution, which will require relocation:

VR(Q) = C∗(Q̌∗
f , Q|Cr) (A.2)

A.3 Counterfactual Algorithm Details

The algorithm described here solves for the parametric pricing equilibrium described in
Section 4.3. For each firm f ∈ F , the algorithm computes the optimal parameters θ∗f for the
firm’s parametric pricing function pθf,P (Qf , h).

In addition to the iteration of the pricing function described in Equation 4 in Section 6.1,
the full algorithm also makes use of a value function to reduce the variance of the estimated
gradients. The intuition is that part of the expected gradient involves the profit of the firm
earned at a particular state (Qf , h), as seen in Equation 2. The profit multiplies the gradient

1See: https://help.bird.co/hc/en-us/articles/360031785072-24-7-Nest-Availability
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on the probability of the realized demand. Thus the gradient effectively puts a greater weight
on realizations of q with higher profits, making these states more likely. However, since the
profits are non-negative, no states are ever penalized with a negative weight. Instead, we
can change the weighting to an advantage which subtracts the expected profit from the
current state. This has the effect of centering the weights, leading to lower variance in
the estimated gradient and better convergence of the stochastic gradient ascent but does
not modify the optimum of the problem. This closely follows the concept of Generalized
Advantage Estimation of Schulman et al. (2015). The algorithm thus uses a parametric
approximation Vϕf

(Qf , h) for each firm f ∈ F .

Recall Equation 3 describing the stochastic gradient used to update the parametric policy.

∇̃θJ(θ) =
1

S

S∑
s=1

[ Ts∑
t=0

(
βt(∇θpθ)qs,t + (∇θpθ)∇p log g(qs,t|p,Q)︸ ︷︷ ︸

log probability gradient

Ts∑
t=0

((p− c)′qs,t)︸ ︷︷ ︸
≈V (Qt,ht)

)]
(A.3)

The last term to be summed over is essentially the profit obtained from the sequence of
demand starting from time t, which has state Qt and ht. In expectation, this sequence
will yield exactly V (Qt, ht), by definition of the value function itself as the continuation
value from a particular state. However, there is significant variance involved in drawing
the sequences of demand. This is a source of variance in the stochastic gradient itself. As
described in Schulman et al. (2015) we can reduce the simulation variance by subtracting
the value function from the simulated profit sequence. This doesn’t change the value of the
gradient in expectation, but reduces its variance. Intuitively, we can think of the sequence
of profits as a weight, which is multiplied with the log probability gradient. Both of these
are random variables, so the variance of their product will depend on both their covariances
and the product of their expectations. By subtracting the value function from the profit
weights, we reduce the expectation of the weights to 0, which also has the effect of reducing
the variance of their product with the log probability gradient. Given the approximation
Vϕ(Q, h), we can thus use a modified gradient as follows:

∇̂θJ(θ) =
1

S

S∑
s=1

[ Ts∑
t=0

(
βt(∇θpθ)qs,t+(∇θpθ)∇p log g(qs,t|p,Q)

( Ts∑
t=0

((p−c)′qs,t)−Vϕ(Qt, ht)
))]

(A.4)
where we subtract Vϕ(Qt, ht) from the profit sequence

∑Ts

t=0((p− c)′qs,t).

At the same time, given different sequences of profit, we can also update the value function
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approximation itself:

∇̂ϕJ(ϕ) =
1

S

S∑
s=1

[
∇ϕ

( Ts∑
t=0

((p− c)′qs,t)− Vϕ(Qt, ht)
)]

(A.5)

We can now define the full price optimization algorithm used to compute the counterfactual
scenarios in Algorithm 1.

Algorithm 1 Stochastic Gradient Price Optimization
for all f ∈ F do

θ0f ← reasonable random initialization
ϕ0
f ← reasonable random initialization

end for
for k from 1 to K do

for s from 1 to S do
Simulate a full day with prices pθkf∀f ∈ F (until Ts s.t. hTs = h̄) to obtain:
qs,f,t, ∀f ∈ F , t ≤ Ts

end for
for all f ∈ F do

Stochastic policy update: θk+1
f = θkf + αk

θ∇̂θkf
J(θkf )

Stochastic value update: ϕk+1
f = ϕk

f + αk
ϕ∇̂ϕk

f
J(ϕk

f )

end for
end for

The parameters used for the various counterfactuals are displayed in Table A.1. All the value
functions used were approximated by a neural network (one for each firm). Additionally the
parameter update steps are performed with the Adam algorithm from Kingma and Ba (2014),
which further tempers the step size for better convergence and uses a form of momentum to
overcome local optima.

Tuning Parameter Two-Part Tariff Stock Invariant Stock Responsive
Value learning rate αV 5e−4 5e−4 5e−4
Price learning rate αp 1e−3 5e−3 5e−6
Advantage Estimation Parameter λ 0.5 0.5 0.5
Batch size 150 150 150
Parallel threads 30 30 30
Batches 12000 18000 18200
Value neural network structure (22; 64; 64; 64; 1) (22; 64; 64; 64; 1) (22; 64; 64; 64; 1)
Price neural network structure N/A N/A (22; 64; 64; 64; 1936)

Neural networks are all MLPs with structure denoted as inputs, neurons in hidden layers, and outputs
See Schulman et al. (2015) for an explanation of the λ parameter

Table A.1: Training Parameters
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Additionally, the expected walking distance, which enters into the utility (see Equation 5), is
re-computed in the counterfactuals by modeling the expected walking distance as a function
of the number of scooters, with the following functional form:

E(wℓ,f |Qℓ,f ;ω) =
ω1
ℓ,f

ω2
ℓ,fQℓ,f + ω3

ℓ,f

+ ω4
ℓ,f (A.6)

When both vehicles and consumers are uniformly distributed, the above formula can be
analytically derived with ω3

ℓ,f = 0 and ω4
ℓ,f = 0. These additional parameters are added

to account for non-normality, and all four parameters are fitted on the original data. An
example of the fit can be found in Figure A.4.

All computation was carried out on the Texas Advanced Computing Center’s Stampede2
cluster, with runtimes of up to 48 hours depending on the pricing function specification.
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B Additional Tables

Firm Unlock fee (SQ) Minute fee (SQ) Unlock fee (CF) Minute fee (CF)
Bird $1.00 $0.39 $0.95 $0.08
Jump (Bike) $0.00 $0.25 $1.12 $0.07
Jump (Scooter) $0.00 $0.25 $1.11 $0.06
Lime $1.00 $0.24 $1.29 $0.09
Lyft $1.00 $0.24 $1.06 $0.08
Razor $1.00 $0.24 $1.15 $0.05
Skip $1.00 $0.25 $1.22 $0.09
Spin $0.00 $0.29 $1.16 $0.05
SQ: Status-quo. CF: Counterfactual

Table A.2: Two-part tariff comparison
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C Additional Figures
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Figure A.1: CDF of trip durations for Jump scooters

Figure A.2: Fine grid of points used to compute expected walking distances.
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Figure A.3: Charging tasks and rewards for Lime scooters. Dated May 18th, 2020.

Figure A.4: Example of the fitted walking distance function
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Figure A.5: Comparison of average vehicle stocks by firm, location, and hour of day

Figure A.6: Comparison of prices under initial vehicle distribution, Jump
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(a) Two-part tariff, profits over training (b) Two-part tariff, training deltas

(c) Stock invariant prices, profits over training (d) Stock invariant prices, training deltas

(e) Stock responsive prices, profits over training (f) Stock responsive prices, training deltas

Figure A.7: Evolution of profits over training
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